Even cycle decompositions of 4-regular graphs and line graphs
نویسنده
چکیده
An even cycle decomposition of a graph is a partition of its edge into even cycles. We first give some results on the existence of even cycle decomposition in general 4-regular graphs, showing that K5 is not the only graph in this class without such a decomposition. Motivated by connections to the cycle double cover conjecture we go on to consider even cycle decompositions of line graphs of 2-connected cubic graphs. We conjecture that in this class even cycle decompositions always exists and prove the conjecture for cubic graphs with oddness at most 2. We also discuss even cycle double covers of cubic graphs.
منابع مشابه
On even cycle decompositions of 4-regular line graphs
We prove that the Petersen colouring conjecture implies a conjecture of Markström saying that the line graph of every bridgeless cubic graph is decomposable into cycles of even length. In addition, we describe two infinite families of 4regular graphs: the first family consists of 3-connected graphs with no even cycle decomposition and the second one consists of 4-connected signed graphs with no...
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملHamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012